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ABSTRACT

Nucleation near the gas-liquid critical point sensitively depends on whether the

pressure or the volume is fixed. We consider near-critical Ωuids close to the coexis-

tence curve. (i) Upon decompression to a constant pressure with a fixed boundary

temperature, bulk nucleation can well be induced from a gas state, whereas from a

liquid state boiling is easily triggered in the thermal diffusion layer near the bound-

ary. In this case bulk nucleation in a metastable gas is described by the classical

Lifshitz-Slyozov theory. (ii) Upon cooling of the boundary temperature under the

fixed-volume condition, bulk nucleation can be realized in a liquid and a modified

Lifshitz-Slyozov theory follows. However, if a gas is cooled from the boundary at a

fixed volume, liquid droplets readily appear in the thermal diffusion layer, appar-

ently suggesting no metastability in a gas in agreement with previous experiments.

(iii) On the other hand, if a liquid is heated at the boundary wall, boiling readily

occurs both at a fixed volume and at a fixed pressure.
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1. INTRODUCTION

Thermal relaxation in Ωuids near the gas-liquid critical point is crucially depen-

dent on whether the pressure or the volume of the container is fixed [1,2]. In the

latter condition, if the boundary temperature is changed, pressure variations prop-

agate as sounds throughout the container and cause almost instantaneous adiabatic

temperature changes (piston effect). The thermal equilibration achieved by this

adiabatic mechanism is increasingly important as the critical point is approached.

Interestingly, thermal relaxation is more complicated in two phase coexistence where

slow transport of heat and mass takes place through the interface [3]. This indi-

cates that adiabatic effects should also be crucially important in phase separation

processes near the gas-liquid critical point, though such effects have attracted not

enough attention.

Nucleation near the gas-liquid critical point was first studied by Langer and

Turski [4], who assumed a constant pressure (isobaric nucleation) in one-component

Ωuids. Very recently we have examined nucleation near the gas-liquid critical point

in more detail both under a constant pressure and in a fixed volume [5]. We assume

that the boundary wall of the container is kept isothermal for t > 0 after the interior

region is brought into a metastable state at t = 0. Here there appears a thermal

diffusion layer with thickness

` = (Dt)1/2. (1)

The cell length L is supposed to be sufficiently long that appreciable droplets of the

new phase emerge while L � `. We shall see that bulk nucleation in the interior

region may be realized when a gas is decompressed at t = 0 to a new fixed pressure

for t > 0 or when a liquid is cooled from the boundary with a fixed volume. In

other cases droplets of the new phase appear in the thermal diffusion layer near the

boundary wall.

Unfortunately, nucleation experiments on one-componemt Ωuids near the gas-
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liquid critical point have not been abundant [6,7]. Most phase separation exper-

iments have been on Ωuid binary mixtures near the consolute critical point using

a pressure quench method, by which the temperature is changed by (∂T/∂p)sxδp

and the critical temperature by (dTc/dp)δp adiabatically after a pressure change

δp [8-10]. As an interesting adiabatic effect Donley and Langer [11] have recently

found a large adiabatic heating in spinodal decomposition of Ωuid binary mixtures

at a constant pressure. It arises from release of the internal energy upon local phase

separation and is closely related to the mechanism of critical acoustic anomaly in

binary mixtures [12].

At the present stage of research we have not yet gained satisfactory understand-

ing of these phase separation phenomena occurring under time-dependent pressure

and/or temperature in one- and two-component Ωuids. Notice that most theories

so far have assumed the isobaric and isothermal conditions in the course of phase

separation. This paper treats one-component Ωuids near the coexistence curve and

examines phase separation far from the boundary (homogeneous nucleation) and

within the thermal diffusion layer (boiling).

2. NUCLEATION FORMULAE

Let a metastable medium of the phase 2 be characterized by the temperature

deviation δT∞(t) and the pressure deviation δp∞(t). They are measured from a

reference state on the coexistence curve and are generally time-dependent. Latent

heat is absorbed by a growing gas droplet and is released by a growing liquid droplet.

The thermal diffusion around the interface gives rise to the evolution equation of

the droplet radius R(t) in the standard form [13],

∂

∂t
R =

D

R

[
∆(t)−

2d

R

]
, (2)

where D is the thermal diffusivity of the phase 2 and ∆(t) is the effective dimen-

sionless supersaturation. The phase 2 is metastable for 0 < ∆(t) << 1, unstable for
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∆(t) >∼1, and is stable for ∆(t) < 0. Near the critical point it is expressed as

∆(t) ∼=
1

6
Ω1/2
s θh(t)

/
(1− T/Tc) , (3)

where Ωs = Cp/Cv is the specific heat ratio growing as (1 − T/Tc)α−Ω as T →

Tc, Ω (∼= 1.25) and α (∼= 0.1) being the usual critical exponents. The h(t) represents

the distance of the medium 2 from the coexistence curve,

h(t) =
1

T

[
− δT∞(t) +

(
∂T

∂p

)
cx

δp∞(t)
]
. (4)

Hereafter θ = 1 (or −1) if the phase 2 is a gas (or liquid) phase. The derivative

(∂T/∂p)cx is the slope of the coexistence curve. The length d in (2) is of order ξ/6

in terms of the thermal correlation length ξ on the coexistence curve.

In the early stage nucleation without appreciable droplets the nucleation rate J

is the probability of finding droplets with R larger than the initial critical radius

Rc(0) = 2d/∆(0) in a unit volume and in a unit time. The classical nucleation

theory [4,14] predicts that J is written in terms of ∆(0) as

J = J0 exp

[
−

16π

3

(
σd2

kBT

)
1

∆(0)2

]
. (5)

where σ is the surface tension.

3. ISOBARIC CASE

We prepare a homogeneous near-critical Ωuid in a cell with a temperature T0 and

a pressure p0 in the time region t < 0. If the system is not on the coexistence curve

and δT0 = T0 − Tcx(p0) is nonvanishing, the original supersaturation becomes

∆(t < 0) ∼=
1

6
Ω1/2
s θ(Tcx − T0)

/
(Tc − Tcx). (6)

We assume that ∆(t < 0) is a negative number or a very small positive number to

avoid any droplet formation before the experiment. We then change the pressure in

a step-wise manner at t = 0 from p0 to p0 + δp∞ and keep it constant at later times.

The temperature far from the boundary will be adiabatically changed immediately
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by ∆T = (∂T/∂p)sδp∞. If the boundary temperature is kept at T0, the temperature

profile near the boundary is of the form,

T (x, t) = T0 + (∆T )erf(x/2
√
Dt), (7)

where x is the distance from the boundary wall and erf(z) = (2/
√
π)
∫ z

0dp exp(−p2) is

the error function tending to 1 for z >> 1. This is the solution of the one-dimensional

heat diffusion equation in the semi-infinite case. The interior temperature is higher

(or lower) than in the bounder layer for compression δp∞> 0 (or decompression

δp∞ < 0). The supersaturation given by (3) is then dependent on x and t as

∆(x, t) ∼= ∆(t < 0)−
1

6(Tc − Tcx)

(
∂T

∂p

)
cx
δp∞

[
1− θΩs

1/2(1− erf(x/2
√
Dt))

]
∼= ∆∞ +

1

6
θΩ1/2

s [∆T/(Tc− Tcx)][1− erf(x/2
√
Dt)] (8)

where ∆∞ = ∆(t < 0)−∆T/6(Tc − Tcx) is the supersaturation in the interior region.

The interior region can be metastable only for expansion or δp∞ < 0. However,

∆(x, t) can be very large in the thermal diffusion layer. We will be discussed for the

two cases θ = ±1 separately.

(A) Gas Case (θ = 1): For δp∞ < 0 the supersaturation is negative in the layer obvi-

ously because the boundary temperature is fixed. Therefore, nucleation experiments

can well be performed in the bulk region by decompression. Even when a wetting

layer of a liquid phase is present at the boundary, it does not grow thicker. Upon

compression δp∞ > 0, on the other hand, the boundary becomes cooler than in the

interior region and the supersaturation can assume a large positive value within the

layer. This indicates liquid condensation near the boundary.

(B) Liquid Case (θ = −1) : For δp∞ < 0 the boundary temperature is higher than

in the interior region and the supersaturation can be positive and very large in the

boundary layer, leading to boiling within the layer. If ∆(t < 0) ∼= 0, the threshold

of boiling is very small and is given by

|∆T | = (∂T/∂p)s|δp∞| >∼Ω
−1/2
s (Tc − Tcx). (9)
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On the contrary, upon compression δp∞ > 0, all the region remains stable.

We further discuss bulk nucleation in the gas case below. Our theory will be valid

outside the layer (x >∼` = (Dt)1/2). Its thickness ` is supposed to be much shorter

than the cell dimension L and the droplet growth occurs before the macroscopic

time L2/D. Namely, the so-called completion time [14] of nucleation is assumed

to be shorter than L2/D. After some calculations the droplet volume fraction φ(t)

satisfies the conservation law [5],

φ(t) + ∆(t) = ∆(0), (10)

The initial supersaturation ∆(0) is the bulk value just after the pressure change,

∆(0) = ∆(t < 0) −
1

6(Tc − Tcx)

(
∂T

∂p

)
cx
δp∞. (11)

Now (2) and (10) coincide with the original Lifshitz-Slyozov equations [13]. Thus,

as the droplets grow, the phase 2 slowly approaches to the coexistence curve as

∆(t) ∼=
(
9d2/Dt

)1/3
. (12)

Near the critical point we obtain

δT∞(t)− (∂T/∂p)cxδp∞ ∼= −6θ(Tc − Tcx)Ω
−1/2
s (9d2/Dt)1/3 . (13)

The factor Ω−1/2
s much reduces the above quantity near the critical point.

4. CONSTANT VOLUME CASE

We assume that a Ωuid near the critical point has a fixed total volume V0 and

was in an equilibrium state on the coexistence curve at a given pressure p0, whose

temperature T0 is equal to the coexistence temperature Tcx(p0). This state will be

chosen as the reference state. The deviation δT0 = T0−Tcx(p0) can be nonvanishing

in experiments, but its effect is only to shift the initial supersaturation by ∆(t < 0).

We then slightly change the boundary temperature at t = 0 and fix it in later times

as

Tb = T0 + T1 . (14)
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In the subsequent relaxation process the thermal diffusion layer plays a role of an

efficient piston giving rise to a nearly homogeneous pressure and temperature on a

fast time scale t1,

t1 = L2/Ω2
sD ∝ (1− T/Tc)

1.4L2 , (15)

where L is the system length and Ωs is the specific heat ratio. For t >∼t1 the

supersaturation tends to 1
6
(−T1)

/
(Tc− Tcx) far from the boundary, but it can vary

rapidly within the thermal diffusion layer as [5]

∆(x, t) ∼=
1

6

[
(−T1)/(Tc − Tcx)

][
1 + 2θ

(
Ωst1

πt

)1/2

exp(−x2/4Dt)
]
. (16)

The inhomogeneity of ∆(x, t) gives rise to important consequences in experiments.

(A) Liquid Case (θ = −1) : If a liquid phase is cooled from the boundary (namely,

T1 < 0),∆(x, t) becomes negative within the thermal diffusion layer in the early

time region, t < Ωst1. However, for t� Ωst1, this inhomogeneity becomes negligible.

Fortunately in this case, controlled nucleation experiments may well be performed.

That is, for t � t1, a nearly homogeneous metastable phase 2 is prepared in the

bulk region, where δT∞(0) ∼= T1 and δp∞(0) ∼= (∂p/∂T )ρT1
∼= (∂p/∂T )sT1. On the

contrary, if a liquid is slightly heated (T1 > 0) above the coexistence curve, the

thermal diffusion layer can become metastable or even unstable in the time region

t < Ωst1, which can lead to boiling. For t ∼ t1 and x ∼= 0, ∆(x, t) attains a maximum,

∆max ∼ Ω
1/2
s |T1|/(Tc − Tcx). (17)

Therefore, if ∆max >∼1 and

Dξ−2Ωst1 ∼ (L/ξ)2/Ωs � 1 , (18)

boiling should be induced in the narrow spatial region x <∼(Dt2)1/2 ∼ L/Ω1/2
s tran-

siently in the time region t <∼t2.

(B) Gas Case (θ = 1) : Upon cooling ∆(x, t) attains a large value within the thermal

diffusion layer. Its maximum ∆max is again given by (17). This means that phase
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separation starts to take place within the thermal diffusion layer for t>∼t1 except for

very small |T1| (� (Tc − Tcx)/Ω1/2
s ). In realistic experimental conditions a liquid

layer will appear to wet the boundary and no appreciable metastability of a gas

phase will be detected. This conclusion is consistent with the experiment by Dahl

and Moldover [6], who observed no metastability in gas states (ρ < ρc) and expected

preferential wetting of a liquid layer at the wall as its physical origin. In addition,

upon heating, the gas phase is always stable everywhere in the cell.

Hereafter we examine the effect of nonvanishing volume fraction φ(t) of gas

droplets in a metastable liquid in the adiabatic nucleation process. We examine the

effects of the droplet growth outside the thermal diffusion layer, so we are requiring
√
Dt << L. Again the completion time [14] is assumed to be shorter than L2/D.

With emergence of gas droplets the mass conservation yields the average density

deviation < δρ(t) > in the phase 2 (or outside the droplets) in the form, < δρ(t) >=

(∆ρ)φ(t), where ∆ρ = ρ2 − ρ1 and and the averaged spatial region includes the

thermal diffusion layer. This density changes causes adiabatic changes throughout

the cell. In other words, the droplets are acting as small pistons. We note that the

density change due to the droplet formation is almost homogeneous on spatial scales

much longer than the droplet radius and is smaller in the thermal diffusion layer

than in the interior region. Therefore, the density change in the interior region in

the phase 2 is almost given by

δρ(t) = [δρ]in + (∆ρ)φ(t), (19)

where [δρ]in is the adiabatic interior density change (∝ T1) without droplets. We

then note that the average entropy deviation δs(t) in the phase 2 outside the thermal

diffusion layer is of the form,

δs(t) = (∆s)φ(t) . (20)

We have thus obtained the interior mean deviations δρ(t) and δs(t) to first order

either in T1 or φ(t). The average pressure and temperature deviations δp∞(t) and
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δT∞(t) in the phase 2 are then related to δρ(t) and δs(t) via the usual thermodynamic

relations. The supersaturation ∆(t) is calculated as

∆(t) = ∆(0)− Aφ(t). (21)

The coefficient A is expressed in terms of thermodynamic derivatives in the phase

2 and is close to 2 near the critical point.

Now (2) and (21) constitute a close set of dynamic equations. We may use the

original Lifshitz-Slyozov results simply by rescaling, ∆̃(t) = ∆(t)/A, d̃ = d/A, and

D̃ = DA. We can confirm that in later stages, dDt � Rc(0)3, Rc(t) and ∆(t) are

independent of A and ∆(t) behaves as (12). For the convenience of experimentalists

we write ∆(0) taking account of ∆(t < 0),

∆(0) =
1

6

[
− T1 +Ω1/2

s θ(Tcx − T0)
]/

(Tc − Tcx) . (22)

The second term in the square brackets arises when the temperature T0 before the

cooling deviates from the coexistence temperature Tcx = Tcx(P0). The temperature

and the pressure deviations depend on φ(t) as

δT∞(t)− (T1 + δT0) ∼= 6(Tc − Tcx)φ(t) , (23)

δp∞(t)−

(
∂p

∂T

)
ρ

T1
∼=

(
∂p

∂T

)
ρ

[
δT∞(t)− (T1 + δT0)

]
, (24)

where δT0 = T0 − Tcx and δT∞(0) = T1 + δT0. We should compare (4) and (13),

which show that the temperature variation in the present adiabatic case is much

larger than that in the isobaric case by Ω1/2
s . Notice that the variations of δT∞(t)

and δp∞(t) almost cancel in ∆(t) in the adiabatic case because they move nearly in

the parallel direction of the coexistence curve in the p− T phase diagram.

Here we should not forget the condition ` < L we have assumed. At later

times, t >∼L
2/D, the Ωuid tends to an equilibrium state which is equilibrated at the

boundary temperature Tb. Thus, the interior mean temperature first approaches
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to the boundary temperature on the time scale of t1 due to the piston effect, sec-

ondly increases as (24) with the droplet growth, and finally returns to the boundary

temperature for t >∼L
2/D.

5. SUMMARY

We have shown that adiabatic temperature and pressure changes are crucially

important in nucleation experiments. Dahl and Moldover’s experiment [6] was per-

formed by cooling a liquid from the boundary in a fixed volume. There, the piston

effect supercooled the interior region and the adiabatic nucleation discussed in Sec-

tion 4 proceeded. More systematic experiments are strongly needed both under the

fixed volume and pressure conditions. Our simple calculation of the supersaturation

∆(x, t) near the boundary shows that boiling can be easily triggered near the criti-

cal point due to large thermal expansion when the boundary temperature is slightly

higher than that in the interior liquid region. To describe such boiling phenomena

we should also take into account wetting of a liquid on a solid wall [14]. Controlled

experiments of boiling near the critical point seem to be promosing.

In this paper the dominant heat source far from the boundary is the latent heat

produced or absorbed at the interfaces of growing droplets. In adiabatic spinodal

decomposition, furthermore, we cannot neglect heat release in its initial stage be-

cause the internal energy changes upon local phase separation [11]. Relatively small

heat release will also occur in late stages due to the decrease of the interface area

with coarsening.
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